34 research outputs found

    Climacteric Lowers Plasma Levels of Platelet-Derived Microparticles: A Pilot Study in Pre-versus Postmenopausal Women

    Get PDF
    Background: Climacteric increases the risk of thrombotic events by alteration of plasmatic coagulation. Up to now, less is known about changes in platelet-(PMP) and endothelial cell-derived microparticles (EMP). Methods: In this prospective study, plasma levels of microparticles (MP) were compared in 21 premenopausal and 19 postmenopausal women. Results: No altered numbers of total MP or EMP were measured within the study groups. However, the plasma values of CD61-exposing MP from platelets/megakaryocytes were higher in premenopausal women (5,364 x 10(6)/l, range 4,384-17,167) as compared to postmenopausal women (3,808 x 10(6)/l, range 2,009-8,850; p = 0.020). This differentiation was also significant for the subgroup of premenopausal women without hormonal contraceptives (5,364 x 10(6)/l, range 4,223-15,916; p = 0.047; n = 15). Furthermore, in premenopausal women, higher plasma levels of PMP exposing CD62P were also present as compared to postmenopausal women (288 x 10(6)/l, range 139-462, vs. 121 x 10(6)/l, range 74-284; p = 0.024). This difference was also true for CD63+ PMP levels (281 x 10(6)/l, range 182-551, vs. 137 x 10(6)/l, range 64-432; p = 0.015). Conclusion: Climacteric lowers the level of PMP but has no impact on the number of EMP in women. These data suggest that PMP and EMP do not play a significant role in enhancing the risk of thrombotic events in healthy, postmenopausal women. Copyright (C) 2012 S. Karger AG, Base

    Markers of thrombogenesis are activated in unmedicated patients with acute psychosis: a matched case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antipsychotic treatment has been repeatedly found to be associated with an increased risk for venous thromboembolism in schizophrenia. The extent to which the propensity for venous thromboembolism is linked to antipsychotic medication alone or psychosis itself is unclear. The objective of this study was to determine whether markers of thrombogenesis are increased in psychotic patients who have not yet been treated with antipsychotic medication.</p> <p>Methods</p> <p>We investigated the plasma levels of markers indicating activation of coagulation (D-dimers and Factor VIII) and platelets (soluble P-selectin, sP-selectin) in an antipsychotic-naive group of fourteen men and eleven women with acute psychosis (age 29.1 ± 8.3 years, body mass index 23.6 ± 4.7), and twenty-five healthy volunteers were matched for age, gender and body mass index.</p> <p>Results</p> <p>D-dimers (median 0.38 versus 0.19 mg/l, mean 1.12 ± 2.38 versus 0.28 ± 0.3 mg/l; P = 0.003) and sP-selectin (median 204.1 versus 112.4 ng/ml, mean 209.9 ± 124 versus 124.1 ± 32; P = 0.0005) plasma levels were significantly increased in the group of patients with acute psychosis as compared with healthy volunteers. We found a trend (median 148% versus 110%, mean 160 ± 72.5 versus 123 ± 62.5; P = 0.062) of increased plasma levels of factor VIII in psychotic patients as compared with healthy volunteers.</p> <p>Conclusions</p> <p>The results suggest that at least a part of venous thromboembolic events in patients with acute psychosis may be induced by pathogenic mechanisms related to psychosis rather than by antipsychotic treatment. Finding an exact cause for venous thromboembolism in psychotic patients is necessary for its effective treatment and prevention.</p

    The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction

    Get PDF
    BACKGROUND: In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. METHODS: To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm(2 )for this study) at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV) experiments. RESULTS: Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. CONCLUSION: The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy
    corecore